Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechniques ; 72(3): 85-89, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124976

RESUMO

The Asteraceae are the largest plant family but among the least studied at the genome level. Our work investigated practical methods to reduce the influence of secondary metabolites - specifically, phenolic compounds - on the extraction of DNA from Silphium spp. This genus is in the Heliantheae tribe of Asteraceae that also includes sunflower (Helianthus annuus). Three methods were attempted in Silphium, with varying condition and age of the leaf sample. A modified cetyl trimethylammonium bromide (CTAB) method on young leaves resulted in the best DNA yield, with sufficient sample purity. No perceptible difference was observed between fresh and lyophilized samples for any extraction method or leaf age. These results provide an excellent basis for DNA extraction of difficult plant samples.


Assuntos
Asteraceae , Helianthus , Asteraceae/genética , DNA , Helianthus/genética , Folhas de Planta/genética
2.
Ecol Evol ; 9(7): 4245-4263, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31016002

RESUMO

Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha-proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein-coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome-wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad-scale genome streamlining via loss of protein-coding genes as well as noncoding, parasitic DNA elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...